Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolutionary history of the GH3 family of acyl adenylases in rosids.

Identifieur interne : 002E95 ( Main/Exploration ); précédent : 002E94; suivant : 002E96

Evolutionary history of the GH3 family of acyl adenylases in rosids.

Auteurs : Rachel A. Okrent [États-Unis] ; Mary C. Wildermuth

Source :

RBID : pubmed:21594748

Descripteurs français

English descriptors

Abstract

GH3 amino acid conjugases have been identified in many plant and bacterial species. The evolution of GH3 genes in plant species is explored using the sequenced rosids Arabidopsis, papaya, poplar, and grape. Analysis of the sequenced non-rosid eudicots monkey flower and columbine, the monocots maize and rice, as well as spikemoss and moss is included to provide further insight into the origin of GH3 clades. Comparison of co-linear genes in regions surrounding GH3 genes between species helps reconstruct the evolutionary history of the family. Combining analysis of synteny with phylogenetics, gene expression and functional data redefines the Group III GH3 genes, of which AtGH3.12/PBS3, a regulator of stress-induced salicylic acid metabolism and plant defense, is a member. Contrary to previous reports that restrict PBS3 to Arabidopsis and its close relatives, PBS3 syntelogs are identified in poplar, grape, columbine, maize and rice suggesting descent from a common ancestral chromosome dating to before the eudicot/monocot split. In addition, the clade containing PBS3 has undergone a unique expansion in Arabidopsis, with expression patterns for these genes consistent with specialized and evolving stress-responsive functions.

DOI: 10.1007/s11103-011-9776-y
PubMed: 21594748


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolutionary history of the GH3 family of acyl adenylases in rosids.</title>
<author>
<name sortKey="Okrent, Rachel A" sort="Okrent, Rachel A" uniqKey="Okrent R" first="Rachel A" last="Okrent">Rachel A. Okrent</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, 221 Koshland Hall, Berkeley, CA 94720, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, 221 Koshland Hall, Berkeley, CA 94720</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wildermuth, Mary C" sort="Wildermuth, Mary C" uniqKey="Wildermuth M" first="Mary C" last="Wildermuth">Mary C. Wildermuth</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21594748</idno>
<idno type="pmid">21594748</idno>
<idno type="doi">10.1007/s11103-011-9776-y</idno>
<idno type="wicri:Area/Main/Corpus">002E08</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002E08</idno>
<idno type="wicri:Area/Main/Curation">002E08</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002E08</idno>
<idno type="wicri:Area/Main/Exploration">002E08</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolutionary history of the GH3 family of acyl adenylases in rosids.</title>
<author>
<name sortKey="Okrent, Rachel A" sort="Okrent, Rachel A" uniqKey="Okrent R" first="Rachel A" last="Okrent">Rachel A. Okrent</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, 221 Koshland Hall, Berkeley, CA 94720, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, 221 Koshland Hall, Berkeley, CA 94720</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wildermuth, Mary C" sort="Wildermuth, Mary C" uniqKey="Wildermuth M" first="Mary C" last="Wildermuth">Mary C. Wildermuth</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis Proteins (classification)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Binding Sites (MeSH)</term>
<term>Carica (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Likelihood Functions (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Nucleotidyltransferases (classification)</term>
<term>Nucleotidyltransferases (genetics)</term>
<term>Nucleotidyltransferases (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (classification)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (genetics)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Synteny (MeSH)</term>
<term>Vitis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Carica (génétique)</term>
<term>Famille multigénique (MeSH)</term>
<term>Fonctions de vraisemblance (MeSH)</term>
<term>Nucleotidyltransferases (classification)</term>
<term>Nucleotidyltransferases (génétique)</term>
<term>Nucleotidyltransferases (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Protéines d'Arabidopsis (classification)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines végétales (classification)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Sites de fixation (MeSH)</term>
<term>Synténie (MeSH)</term>
<term>Vitis (génétique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Nucleotidyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Nucleotidyltransferases</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Carica</term>
<term>Nucleotidyltransferases</term>
<term>Plant Proteins</term>
<term>Populus</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Carica</term>
<term>Nucleotidyltransferases</term>
<term>Populus</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Nucleotidyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Nucleotidyltransferases</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Evolution, Molecular</term>
<term>Likelihood Functions</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Sequence Alignment</term>
<term>Synteny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Famille multigénique</term>
<term>Fonctions de vraisemblance</term>
<term>Phylogenèse</term>
<term>Sites de fixation</term>
<term>Synténie</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">GH3 amino acid conjugases have been identified in many plant and bacterial species. The evolution of GH3 genes in plant species is explored using the sequenced rosids Arabidopsis, papaya, poplar, and grape. Analysis of the sequenced non-rosid eudicots monkey flower and columbine, the monocots maize and rice, as well as spikemoss and moss is included to provide further insight into the origin of GH3 clades. Comparison of co-linear genes in regions surrounding GH3 genes between species helps reconstruct the evolutionary history of the family. Combining analysis of synteny with phylogenetics, gene expression and functional data redefines the Group III GH3 genes, of which AtGH3.12/PBS3, a regulator of stress-induced salicylic acid metabolism and plant defense, is a member. Contrary to previous reports that restrict PBS3 to Arabidopsis and its close relatives, PBS3 syntelogs are identified in poplar, grape, columbine, maize and rice suggesting descent from a common ancestral chromosome dating to before the eudicot/monocot split. In addition, the clade containing PBS3 has undergone a unique expansion in Arabidopsis, with expression patterns for these genes consistent with specialized and evolving stress-responsive functions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21594748</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>09</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>76</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2011</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolutionary history of the GH3 family of acyl adenylases in rosids.</ArticleTitle>
<Pagination>
<MedlinePgn>489-505</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-011-9776-y</ELocationID>
<Abstract>
<AbstractText>GH3 amino acid conjugases have been identified in many plant and bacterial species. The evolution of GH3 genes in plant species is explored using the sequenced rosids Arabidopsis, papaya, poplar, and grape. Analysis of the sequenced non-rosid eudicots monkey flower and columbine, the monocots maize and rice, as well as spikemoss and moss is included to provide further insight into the origin of GH3 clades. Comparison of co-linear genes in regions surrounding GH3 genes between species helps reconstruct the evolutionary history of the family. Combining analysis of synteny with phylogenetics, gene expression and functional data redefines the Group III GH3 genes, of which AtGH3.12/PBS3, a regulator of stress-induced salicylic acid metabolism and plant defense, is a member. Contrary to previous reports that restrict PBS3 to Arabidopsis and its close relatives, PBS3 syntelogs are identified in poplar, grape, columbine, maize and rice suggesting descent from a common ancestral chromosome dating to before the eudicot/monocot split. In addition, the clade containing PBS3 has undergone a unique expansion in Arabidopsis, with expression patterns for these genes consistent with specialized and evolving stress-responsive functions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Okrent</LastName>
<ForeName>Rachel A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of California, 221 Koshland Hall, Berkeley, CA 94720, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wildermuth</LastName>
<ForeName>Mary C</ForeName>
<Initials>MC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>05</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="D009713">Nucleotidyltransferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029441" MajorTopicYN="N">Carica</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016013" MajorTopicYN="N">Likelihood Functions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009713" MajorTopicYN="N">Nucleotidyltransferases</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>10</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>04</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21594748</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-011-9776-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1997 Dec 16;36(50):15650-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9398293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Apr;17(4):540-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10742046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1991-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1405-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Feb 9;20(3):237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20096581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Aug 08;2(8):e718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17684564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Oct;20(10):1192-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17918621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Aug;48(8):1236-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17602188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2007 Dec;17(6):505-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):1144-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Jun;226(1):21-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17216483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Dec;148(4):1772-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Feb;37(4):471-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14756757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2006 Apr 09;6:32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Feb;53(4):661-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18269575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2005 Apr;95(5):707-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Apr 24;452(7190):991-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18432245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Jan;75(1-2):107-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21069430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Aug 1;14 (15):1958-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10921909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 20;326(5956):1112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19776160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Jan;25(2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jul;43(1):153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15960624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):2117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Feb;13(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6837-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2621-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D575-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:433-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Jul;58(4):447-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16021332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Mar;22(3):792-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15590907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1984 Sep;162(2):147-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24254049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 9;448(7154):666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2004 Jul;161(7):823-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15310072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jul;19(7):2225-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17616737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Oct;5(5):430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2008 Feb;100(2):220-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17551519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 May;54(3):452-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18266921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 Jun;21(6):310-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15922825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Jul;35(2):193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12848825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2003 Oct;52(5):696-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Oct;136(2):3009-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Oct;148(2):993-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18715958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Dec 23;10:630</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20030836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Oct;44(10):1071-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14581632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jul;39(2):170-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15225283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 Jun;21(6):307-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15922824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Aug;7(4):465-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Oct;145(2):450-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17704230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jan;181(2):323-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19032442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2006 Jan;6(1):36-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15856348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jan;20(1):228-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18192436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2005 Feb 25;6:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15733318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 10;284(15):9742-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19189963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jan;37(2):209-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jul;51(2):234-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17521413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(3):526-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18419781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 May;152(1):401-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10224270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 30;282(13):10036-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17276977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jan 4;319(5859):64-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D883-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17145706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2006 Sep 1;2(9):e115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16948529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Feb;17(2):616-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1996 Mar 15;4(3):287-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8805533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2006 Apr 26;371(2):279-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16488558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Mar;122(3):627-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):201-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132872</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Wildermuth, Mary C" sort="Wildermuth, Mary C" uniqKey="Wildermuth M" first="Mary C" last="Wildermuth">Mary C. Wildermuth</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Okrent, Rachel A" sort="Okrent, Rachel A" uniqKey="Okrent R" first="Rachel A" last="Okrent">Rachel A. Okrent</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E95 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002E95 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21594748
   |texte=   Evolutionary history of the GH3 family of acyl adenylases in rosids.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21594748" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020